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ABSTRACT: As a fundamental water flux, quantitative understanding of precipitation is important to understand and

manage water systems under a changing climate, especially in transition regions such as the coastal interface between land

and ocean. This work aims to assess the uncertainty in precipitation detection over the land–coast–ocean continuum in the

Integrated Multisatellite Retrievals for Global Precipitation Measurement (IMERG) V06B product. It is examined over

three coastal regions of the United States—the West Coast, the Gulf of Mexico, and the East Coast, all of which are

characterized by different topographies and precipitation climatologies. Detection capabilities are contrasted over different

surfaces (land, coast, and ocean). A novel and integrated approach traces the IMERG detection performance back to its

components (passive microwave, infrared, and morphing-based estimates). The analysis is performed by using high-

resolution, high-quality GroundValidationMulti-Radar/Multi-Sensor (GV-MRMS) rainfall estimates as ground reference.

The best detection performances are reported with PMW estimates (hit rates in the range [25%–39%]), followed by

morphing ([20%–34%]), morphing1IR ([17%–27%]) and IR ([11%–16%]) estimates. Precipitation formationmechanisms

play an important role, especially in theWest Coast where orographic processes challenge detection. Further, precipitation

typology is shown to be a strong driver of IMERG detection. Over the ocean, IMERG detection is generally better but

suffers from false alarms ([10%–53%]). Overall, IMERG displays nonhomogeneous precipitation detection capabilities

tracing back to its components. Results point toward a similar behavior across various land–coast–ocean continuum regions

of the CONUS, which suggests that results can be potentially transferred to other coastal regions of the world.

KEYWORDS: Precipitation; Remote sensing; Satellite observations; Statistical techniques; Coastal meteorology; Radars/radar

observations; Uncertainty

1. Introduction

More than a billion people are estimated to live in coastal

regions globally (Neumann et al. 2015). Climate change and

anthropogenic activities modify the water fluxes and processes

between land and ocean. Rising sea levels and changing pre-

cipitation patternsmay enhance sea–land exchange and expose

these regions to more impactful hazards (i.e., hurricanes and

floods) from both ocean and land. As a fundamental water flux,

precipitation is particularly important to study in transition

regions that involve diverse processes such as the coastal in-

terface between land and ocean. A detailed understanding and

observation of precipitation over the land–coast–ocean con-

tinuum is still lacking, especially since observations over oceans

are limited by remoteness and scale. Observations of precipi-

tation over the ocean can be conducted by using weather radars

situated on islands and coastlines and with rain gauges on ships

and buoy gauge arrays (e.g., Anagnostou et al. 1999; Smith et al.

2009; Bowman et al. 2003; Serra andMcPhaden 2003;Morrissey

et al. 2012). The weather radars provide high-spatiotemporal-

resolution precipitation measurements; however, they are lim-

ited in coverage. The buoy gauges take point measurements at

high temporal resolution, but they have limited spatial repre-

sentativeness and uncertainty associated with wind-induced

undercatch, stability of the measuring platforms, and evapora-

tion during daytime (Sapiano and Arkin 2009; Serra et al. 2001;

Serra 2018). Hence, oceans remain among the regions that

suffer from scarcity of precipitation measurements.

Satellite-based precipitation products (SPPs) provide the

best coverage spatially and temporally at the global scale and

especially over the land–coast–ocean continuum. The great

success of the Tropical Rainfall Measuring Mission (TRMM)

has led to the Global Precipitation Measurement Mission

(GPM) and accelerated the development of new SPP al-

gorithms, such as the Integrated Multisatellite Retrievals

for Global Precipitation Measurement (IMERG). IMERG

merges available Level-2 passive microwave (PMW) and

infrared (IR) precipitation retrievals at a high spatial (0.18) and
temporal resolution (30 min). Yet, multiple uncertainties are
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associated with Level-2 PMW and IR precipitation retrievals and

Level-3 merged SPPs, especially in coastal regions. Precipitation

retrievals from PMWobservations highly depend on the ability to

separate emission and scattering radiances of rain, ice, and clouds

from Earth’s surface. This is a complicated task since the ocean

surface is radiometrically cold and homogeneous, while the land

surface is warm and heterogeneous. Coastal regions include con-

trasting radiative contributions from both ocean and land surfaces,

and hence are particularly challenging regions that yield among the

most uncertain satellite precipitation retrievals. PMW algorithms

utilize a surface mask to condition different Bayesian algorithms

over ocean and land to constrain overland retrievals. GPM-era re-

trievals have not been evaluated over the land–coast–ocean con-

tinuum yet, and both the GPM ground validation (GV) group and

IMERG algorithm developers highlight the importance of evalua-

tion studies in ‘‘nontraditional’’ regions such as coasts and ocean.

Ground-based precipitation measurements provide an in-

dependent source of validation to determine the uncertainty

characteristics of SPPs. The performance of GPM-era and

TRMM-era products has been studied in detail over the globe

(McCollum et al. 2002; Ebert et al. 2007; Anagnostou et al.

2010; Derin and Yilmaz 2014; Derin et al. 2016, 2019; Mei et al.

2014; Maggioni et al. 2016, 2017; Gebregiorgis et al. 2017, 2018;

Manz et al. 2017; Ayat et al. 2021). Several studies focused

on SPPs’ uncertainty characteristics over the ocean. Wolff

and Fisher (2009) assess the relative performance and skill

of multiple PMW retrievals at the instantaneous time scale

over two GV sites. Acknowledging that the surface type affects

the relative performance of SPP algorithms, they conditioned

the performance analyses based on ocean, land and coast

surfaces. They found that TRMM PMW sensors overestimated

precipitation rates over land and coast and underestimated pre-

cipitation over the ocean. Carr et al. (2015) evaluated TMI against

the radar–gauge Ground Validation Multi-Radar/Multi-Sensor

(GV-MRMS)over different surface types over theCONUS.They

also found that over the ocean the TMI estimates were under-

estimating precipitation relative to GV-MRMS, although the

convective fractionwas overestimated.Khan andMaggioni (2019)

evaluated IMERG, version 5 (IMERGV05), including its pas-

sivemicrowave (IMERG-PMW) and the infrared (IMERG-IR)

components, against the shipboard OceanRAIN precipitation

dataset (Ocean Rainfall and Ice-Phase Precipitation Measurement

Network) and Level-3 DPR (3DPRD) at 0.58 resolution and at the
daily time scale. They concluded that IMERGV05 correctly

detected precipitation 80% of the time, but IMERG-IR showed

poor linear correlation and large departures with the daily ref-

erence, and IMERG-PMW performed better than other prod-

ucts in terms of precipitation detection and quantification. Note

that the variability of precipitation at all scales challenges the

comparison of point measurements like OceanRAIN and

SPP gridded estimates. In general, analyses focusing on the

evaluation of the SPPs over the ocean have been performed

over limited periods or regions, which limits their represen-

tativeness. Comparisons at time scales finer than daily (e.g.,

from 30 min to 3 h) are needed to characterize the ability of

high-resolution satellite estimates to capture the precipitation

variability. While some studies focused on the land–coast–

ocean continuum (Carr et al. 2015; Wolff and Fisher 2009) for

TRMM-era algorithms, the performance of GPM-era algo-

rithms remains largely unknown.

The primary objective of this study is to evaluate IMERGV06B

(hereinafter IMERG) over the land–coast–ocean continuum

characterized by high Tb (brightness temperature) radio-

metric gradients at the native resolution (0.18 spatial and

30 min temporal) of IMERG. Because of differences in

satellite-based instrument operating frequencies, footprint

sizes, and scan strategies, sensors in the GPM constellation

have different sensitivities to the land–coast–ocean transition

zone. Their associated precipitation retrievals exhibit differ-

ent performances, which represents a challenge for the in-

tercalibration of all PMW estimates that aims to mitigate the

mean bias of each sensor in IMERG. Knowledge of biases in

the calibrated PMW and IR estimates can help the IMERG

developers refine the intercalibration process and improve

precipitation in areas that are among the most populated

globally. Our aim is to identify the sources of uncertainty and

evaluate IMERG against the ground reference. This is per-

formed through a novel and integrated approach using an-

cillary variables provided by IMERG to trace the uncertainty

back to the sources of precipitation estimates. The analysis is

conducted by providing statistics including two-dimensional his-

togram skill scores and graphicalmeasures to complete the picture

of SPP performance. To achieve this goal, IMERG Final, Late,

and Early; IMERG-PMW; and IMERG-IR abilities to detect

precipitation over the land–coast–ocean continuum were exam-

ined and linked to surface and precipitation characteristics.

It is critical to evaluate the transferability of regional eval-

uation results to different but similar areas. This important

question has implications in terms of assessing SPPs perfor-

mances in regions of the world devoid of ground observations.

The question of transferability is addressed by examining the

similarities and differences in IMERG detection performances

over different coastal regions of the CONUS that are charac-

terized by various topographies and precipitation climatol-

ogies. Three different land–coast–ocean continuum regions are

considered, namely, the West Coast, Gulf of Mexico, and East

Coast. The evaluation is conducted against the radar- and

gauge-based GV-MRMS over a period of 12 months in 2015.

The evaluation of the IMERG is conducted in two broad steps as

detection and quantification analysis. This first part (Part I) of

the study encompasses the detection step, and a companion pa-

per (Part II; Y.Derin et al., unpublishedmanuscript) encompasses

the quantification step over the same study region and period.

This paper is organized as follows. Section 2 provides the

details of the study area and datasets. The evaluationmethod is

represented in section 3, and section 4 discusses the results.

Section 5 summarizes our conclusions and offers recommen-

dations for future research directions.

2. Study region and dataset

a. Study region

The CONUS has diverse climatic and topographic features.

In this study we will be focusing on the land–coast–ocean

continuum, and we divide this continuum into the following

three regions: West Coast, Gulf of Mexico Coast, and East
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Coast. The West (Pacific) Coast of the United States is char-

acterized by steep mountain chains. This region experiences

among the highest precipitation rates in the United States

brought by the combination of large water vapor fluxes im-

pinging upon steeply sloping terrain and the basins generate

the highest number of floods and the highest magnitude of

flooding (Saharia et al. 2017). Over this region orographic

mechanisms tend to generate low-level enhancement of pre-

cipitation with lower ice content aloft. It challenges satellite

precipitation estimation since the signature of ice content in

the Tb is a primary driver of satellite precipitation over land.

During the warm season, the cool marine layer and coastal

mountains lead to marine stratus and fog. During the winter

season synoptic-scale cyclones and fronts from the Pacific

Ocean undergo complex interactions with coastal mountains

within 50 km of the coastline. In contrast to theWest Coast, the

Gulf of Mexico and tropical southeast Atlantic coasts are

characterized by flatter terrain. During the warm season, sea-

breeze fronts, convective storms, and tropical cyclones are

observed, while during the cool season the Gulf Coast is

dominated by the return flow of Gulf-modified warm, moist air

and cold front passages. The Atlantic coast (East Coast) ex-

tending fromGeorgia to the Northeast is characterized by the

AppalachianMountains and complex coastal features consisting

of barrier islands and coastal inlets. During the warm season, the

Gulf Stream is significantly different from the land in terms of

wind, humidity and temperature. During the cool season, off-

shore Gulf Stream frontal features are combined with cold air

over land, producing complex mesoscale cloud systems. These

mesoscale cloud systems include intense coastal cyclogenesis

that often brings freezing rain, sleet, and snow on regions ex-

tending from North Carolina through New England.

b. Surface type classification

Surface type is determined by using the GPROFV05 surface

type dataset (Fig. 1a). This classification conditions the PMW

retrievals of precipitation, hence it is consistent with IMERG.

The surface classification identifies three surface types as land,

ocean and coast for each pixel. This classification is derived

from the Colorado State University surface classification

scheme (NASA 2017) at 0.258 resolution andmonthly intervals

and based on surface microwave emissivity. The surface type

classification begins with ten land classes using self-similar

mean emissivities from all available SSM/I observations from 1993

to 2008 under clear sky conditions (Prigent et al. 1997), to which

ocean, sea ice, land–ocean, and ocean–sea ice surface types are

added. Then the GPROF algorithm defines the GPM land/ocean

boundary by using an ;1-km MODIS/SeaWIFS/ Ocean Color

land mask based on theWorld Vector Shoreline database. As

can be seen on Fig. 1a, this classification allows inland pixels

to be classified as ‘‘coast.’’ It should be noted that surface

properties like emissivity are characterized by high gradients

in these transition regions. Figure 1b provides the distribu-

tions of the distances between the matched grids and the

coastline taken from the NOAAmedium resolution shoreline

dataset (NOAA; https://shoreline.noaa.gov/data/datasheets/

medres.html). While most of the coast pixels are within 50 km

of the coastline, some of them are located as far as 300 km

inland. Most land-matched pixels are located in the 25–150-km

range from the coastline. Given the range of WSR-88D instru-

ments, ocean-matched pixels are located up to 425 km from the

coastline. We select ocean pixels within 100 km to the nearest

radar to ensure optimal radar sampling, and we perform the

analysis only with the higher-quality GV-MRMS reference.

c. GV-MRMS

The evaluation of SPPs requires deriving high-quality ref-

erence rainfall datasets at the satellite product pixel spatial and

temporal resolution. In this study as a reference dataset the

high-resolution, ground-based, radar–rain gauge corrected

precipitation dataset GV-MRMS (Kirstetter et al. 2012, 2018)

is used. GV-MRMS builds on MRMS that uses advanced data

integration techniques to create high-resolution 3D reflectivity

mosaic grids and quantitative precipitation estimates at 0.018
spatial and 2-min temporal scales (Zhang et al. 2016). GV-

MRMS blends radar and gauge data at the maximum time and

space resolution providing a high-quality reference dataset,

which is matched to IMERG’s native time and spatial reso-

lution (0.18 and 30 min). It provides a radar quality index

(RQI) to represent the level of uncertainty associated with

reflectivity changes with height and near the melting layer. A

high-quality and standardized reference is obtained by fil-

tering less trustworthy GV-MRMS estimates associated with

lower RQI estimates. Additional gauge-based corrections,

FIG. 1. The study region, with (a) a spatialmap of the surface type classification and (b) the distribution of each surface type as a function of

distance from the coastline.
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quality and quantity controls, and resampling procedures are

applied and described in detail in Kirstetter et al. (2012, 2014,

2015). In this study the radar- and gauge-based GV-MRMS is

used over a period of 12 months in 2015.

d. IMERG algorithm

The IMERG algorithm is designed to intercalibrate, merge,

and interpolate all available satellite microwave retrievals,

microwave-calibrated IR satellite estimates, and rain gauge

measurements. The merging of different sensors is conducted

to compensate for the limited sampling of low-Earth-orbiting

PMW satellites. Level-2 PMW precipitation is retrieved using

the GPROF2017 (GPROFV05) Bayesian-based algorithm

(Huffman et al. 2019). Basically, GPROF2017 searches an a

priori database (based on DPR and GMI of the previous

version of GPROF algorithm) for potential rain profiles and

retrieves a weighted average of these precipitation profiles.

Note that the PMW retrieval is conditioned by the surface

microwave emissivity, which in turn depends on dielectric

properties, the roughness, and the material of the surface.

Specifically, the emissivity from ocean, land, and ice/snow-

covered surfaces present large differences. The ocean surface

has a low and polarized emissivity and land has a high microwave

emissivity across themicrowave spectrum. Snow- and ice-covered

surfacemicrowave emissivities vary significantly depending on the

snow and ice properties (Takbiri et al. 2019; Kummerow 2020).

Over the ocean, PMW algorithms can separate the surface radi-

ation signal from the emission signal for liquid hydrometeors.

Over land, microwave emissivity is sensitive to soil moisture,

particularly at lower frequencies, which obscures the liquid hy-

drometeor emission signals. Hence, coastal areas present high

emissivity gradients that challenge GPROF2017 precipitation

retrieval. These retrievals are then intercalibrated to CORRA

(the GPM combined radar-radiometer precipitation estimates)

using probability matching. When low-Earth-orbiting PMW ob-

servations are too sparse, geostationary IR precipitation obser-

vations are merged within the algorithm using a Kalman-filter

approach. The IR retrievals are provided by Precipitation

Estimation from Remotely Sensed Information Using Artificial

Neural Networks–Cloud Classification System (PERSIANN-

CCS; Hong et al. 2007). The CPC morphing–Kalman-filter

(CMORPH-KF; Joyce and Xie 2011) quasi-Lagrangian time

interpolation scheme uses the PMW and IR estimates to create

half-hourly estimates. This system is run twice in real time for the

‘‘early’’ multisatellite product (;4 h after observation time),

‘‘late’’ multisatellite product (;14 h after observation time), and

‘‘final’’ satellite–gauge product (;3.5 months after the observa-

tion month). For the ‘‘final’’ product, half-hourly multisatellite

estimates are adjusted to the monthly satellite–gauge combina-

tion.One of themajor upgrades to IMERGV06 is the calculation

of displacement vectors for morphing the PMW by using global

total precipitable water vapor (TQV) estimates. Note that the

minimum detectable rain rates from the Ka- and Ku-band radar

are 0.2 and 0.5mmh21, respectively (Hou et al. 2014). GPROF is

calibrated by these radar-based products, so the IMERG esti-

mate could produce rain rates that are lower than these two

thresholds. Hence, in the literature mostly 0.1 mm h21 is used for

the minimum rain/no-rain detection threshold.

In this study we use IMERG Early, Late, and Final (IM-E,

IM-L, and IM-F, precipitationCal fields are used) with the aim

of understanding the performance of each run, specifically the

morphing and the effectiveness of rain gauge correction over

the land–coast–ocean continuum. To track uncertainties from

Level-2 algorithms, IMERG-PMW (PMW) and IMERG-IR

(IR) precipitation estimates are examined using ancillary

variables provided by IMERG. The HQprecipitation and

IRprecipitation fields are used for PMW and IR, respectively.

The new PMW morphing procedure (morph) is targeted by

selecting instances from precipitationUnCal field where

there is no PMW retrieval (HQprecipSource reports zero)

and no IR contributed estimate (IRkalmanFilterWeight of

0%). IRkalmanFilterWeight between 0% and 100% corre-

sponds to a mixture of morphed PMW and IR estimates

(morph1IR) from precipitationUnCal field. The ancillary

variables and their definitions provided by IMERG can be

seen in Table 1.

e. Data matchup

IMERG matchups are extracted following a temporal and

spatial matching with GV-MRMS that leaves the SPP tempo-

ral and spatial resolution untouched, so that it remains free of

undesirable impacts caused by statistical or dynamical resam-

pling (Kirstetter et al. 2012, 2015). Rainfall characteristics and

their spatial distributions vary significantly across the United

States. Figure 2 maps the frequency of rainfall detected by

IMERG-Final, -PMW, and -IR over the land–coast–ocean

continuum. To highlight the differences between IMERG

and GV-MRMS in detecting precipitation, only cases where

rainfall is detected either by IMERG or GV-MRMS are

displayed. GV-MRMS conditional relative rainfall occur-

rence (%) decreases farther away from the coast (Fig. 2a).

GV-MRMS detects less rainfall because radar sampling

conditions deteriorate with distance (e.g., with radar beam-

width and height). Optimal reference conditions are targeted

in this study by selecting GV-MRMS grids within 100 km of

each NEXRAD location [provided in Fig. 2 as a red circle

representing 100-km radius around each NEXRAD (black

dots)]. It provides a consistent representation of the rainfall

to focus on SPP differences across surface types. IMERG-IR

rainfall occurrence is generally lower than 50% and less than

TABLE 1. Ancillary variables and definitions provided by

IMERG.

Ancillary

variable name Definition

HQprecipitation Merged microwave-only precipitation

estimate

HQprecipSource Microwave satellite source identifier

IRprecipitation IR-only precipitation estimate

IRkalmanFilterweight Weighting of IR-only precipitation

relative to the morphed merged

microwave-only precipitation

precipitationCal Multisatellite precipitation estimate with

gauge calibration

precipitationUncal Multisatellite precipitation estimate

2846 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 11/30/21 02:39 PM UTC



30% over the East Coast and the northwest coast (Fig. 2c).

Meanwhile, rainfall occurrence is reported to be greater than

80% over the East Coast and northwest coast regions by GV-

MRMS (Fig. 2a). This highlights rainfall detection challenges

with the IR-based retrievals. IMERG-PMW reports higher

rainfall occurrence than IMERG-IR, also higher over the

ocean than coastal regions and land. IMERG-Final (Fig. 2b)

displays the highest rainfall occurrence over all surface types.

As mentioned previously, the dataset is divided into three

different surface types namely, land, coast, and ocean using the

GPROFV05 surface classification dataset. The sample size of

the matched dataset with and without quality control for each

surface type is presented in Table 2.

3. Evaluation method

We investigate the performance of IMERG-Final, IMERG-

PMW, IMERG-IR, IMERG-PMW morphing, and IMERG-

PMW morph and IR mix using categorical and graphical

measures. The evaluation is conducted at IMERG’s native

spatial and temporal resolution of 0.18 and 30min.Asmentioned

in the previous section, radar sampling conditions deteriorate

with distance (e.g., radar beamwidth and height). To conduct a

fair analysis, an optimum distance of 100 km (red circles in

Fig. 2a) from the closest NEXRAD radar is chosen. GV-MRMS

rain/no-rain threshold is set as 0.1mmh21, andmatchupdatasets

that have RQI of 100 are used. Moreover, GV-MRMS provides

the precipitation type for each grid cell; those that are reported

as snow are disregarded from this analysis.

The detection capabilities of IMERG are analyzed with

categorical skill scores. IMERG and GV-MRMS either do or

do not detect rainfall and the performance of IMERG is for-

mulated in terms of hits, false alarms, misses and correct rejec-

tions with 2 3 2 contingency tables. In the literature there has

been significant work to identify and quantify the properties of

binary verification. Gandin and Murphy (1992) introduced the

definition of equitability, which is the property of being awarded

the same expected score for all random forecasting systems in-

cluding those that always predict occurrence or nonoccurrence.

The conventional approach consists of calculating values for

one or more summarymeasures and drawing conclusions about

IMERG performance as the percentage of hits (H: both GV-

MRMSand IMERGdetect rain), false alarms (F: IMERGdetects

rain while GV-MRMS does not), misses (M: IMERG does not

detect rain while GV-MRMS detects rain), and correct rejections

(C: bothGV-MRMS and IMERGdo not detect rain). For a 23 2

contingency table, the dimensionality is three where the fourth

degree of freedom is fixed by the joint probabilities summing to

unity. Therefore, a full description of IMERG detection perfor-

mance requires only three parameters that can be expressed in

terms of probability of detection (POD), probability of false de-

tection (POFD), and base rate s. The formulas for each score are

POD5
H

H1M
, (1)

POFD5
F

F1C
, and (2)

s5
H1M

H1M1F1C
: (3)

The POD indicates what fraction of the observed events was

correctly detected by IMERG; a perfect score is 1. The POFD

is the fraction of IMERG events that actually did not occur; a

perfect score is 0. The s indicates sample climatological relative

frequency. It should be emphasized that these scores do not

measure how well the IMERG rainfall magnitudes correspond

to the reference but are only measures of relative frequencies.

Note also that no performance score is meaningful when con-

sidered in isolation, and all these three scores should be used in

combination to make inferences on IMERG detection per-

formance. In our case this could be cumbersome when com-

paring multiple regions, datasets, and surface types, not to

FIG. 2. Conditional relative rainfall occurrence of (a) GV-MRMS, (b) IMERG-Final, (c) IMERG-IR, and (d) IMERG-PMW. The

locations of each NEXRAD radar are displayed (black filled circles) along with the corresponding 100-km radii (red open circles).
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mention that it is difficult to systematically discuss the prop-

erties of particular performance scores. Also, POD and

POFD are inequitable as performance measures since they

degenerate for rare events; that is, they will score higher for

random retrievals of rare events than for random retrievals of

common events.

To obtain an equitable performance score, one should

consider summing over all possible contingency table scores,

each of which is multiplied by the probability of it occurring by

chance (Jolliffe and Stephenson 2012). One example of such a

score is the Heidke skill score (Heidke 1926) for multicategory

verification. HSS is a truly equitable score that awards random

and constant forecasts with an expected score of zero. It

quantifies the accuracy of the estimate relative to that of ran-

dom chance. HSS eliminates random forecasts that would be

correct due to pure random chance and measures the fraction

of correct forecasts. The HSS can be calculated as

HSS5
2(HC2FM)

F2 1M2 1 2HC1 (F1M)(H1C)
: (4)

It measures the skill of an algorithm at making a discrete

classification and varies from 21 to 11, with 21 indicating

perfect negative skill, zero indicating no skill relative to

chance, and 11 indicating perfect positive skill. An HSS value

greater than 0.3 indicates significant skill with respect to

random chance.

The HSS score has been used to characterize the perfor-

mance of IMERGand its components in detecting rain fromno

rain with respect to a reference dataset using a predefined

threshold. The detection performance can be evaluated by

predicting the exceedance relative to a range of rainfall

thresholds. Since higher rainfall rates are less frequent, larger

exceedance thresholds naturally lead to fewer hits but also to

fewer false alarms. As pointed out by Conner and Petty (1998),

this sensitivity to thresholds is a challenge for an objective

analysis. Hence, working with a single HSS value computed

with an a priori threshold can be misleading. Instead, the HSS

can be computed and plotted as a continuous bivariate function

of two continuously varying rainfall rate thresholds based on

GV-MRMS and IMERG. The maximum IMERG skill at

distinguishing rain rates that are greater than any threshold

applied to the GV-MRMS can be evaluated, and the maximum

skill found across all GV-MRMS thresholds is independent of

any bias (linear or nonlinear) in the IMERG retrieval (Chiu

and Petty 2006). Hence, the performance of IMERG at dis-

criminating between high and low rain rates can be inferred

independent of any biases. Moreover, any (conditional) bias

can be diagnosed from the relationship between the GV-

MRMS and IMERG threshold magnitudes at which HSS is

maximized. In short, it is possible to evaluate and objectively

compare the maximum skill of IMERG at distinguishing rain

rates that are greater than any threshold applied to the GV-

MRMS and IMERG. The two-dimensional HSS approach

(2D-HSS) is particularly useful for determining the optimum

delineation of nonzero rain rates over challenging conditions

including surface types, regions, and rainfall climatologies

(Petty and Li 2013).

The IMERG rain-rate threshold Rspp that optimizes the

delineation of any given nonzero GV-MRMS rain rate Rgv can

be determined by 2D-HSS analysis. The following summarizes

the useful information 2D-HSS bivariate histogram provides

(Chiu and Petty 2006; Petty and Li 2013;Wolff and Fisher 2009;

Munchak and Skofronick-Jackson 2013):

(i) The IMERG rain-rate threshold that maximizes the HSS

as a function of any given GV-MRMS rain-rate threshold

identifies the optimal balance between hits, misses, false

alarms, and correct rejections and the corresponding

performance with respect to random chance. It can be

compared with the 1:1 line to infer IMERG biases. If the

line of the maximum HSS is above or below the 1:1 line,

then the estimate is biased high or low, respectively.

(ii) Conversely, the GV-MRMS rain-rate threshold that

maximizes HSS for any given IMERG rain-rate threshold

(e.g., thick white lines in Fig. 4, below) can be inferred as

the effective sensitivity of IMERG for this threshold.

(iii) The maximum HSS curve can be plotted as a function of

Rgv (i.e., HSS values at the location of the thick black line

on Fig. 4, below). This plot provides maximum skill of

IMERG at delineating GV-MRMS rain rates exceeding

any given threshold. In particular, the maximum skill at

delineating all nonzero GV-MRMS rain rates is deter-

mined at the minimum GV-MRMS threshold (e.g., the

intersection of the curve with the y axis on Fig. 5, below).

(iv) The IMERG threshold valueRspp for which themaximum

skill is observed at delineating all GV-MRMS positive rain

rates. For example, in Fig. 4 (below), Rspp corresponds to

the intersection of a thick black line with the y axis.

4. Rainfall detection results

a. General performance of IMERG products and

components

Detection performance is evaluated with categorical skill

scores: percentage of hits, misses, false and correct negatives are

presented in Fig. 3. The results are broken down by regions

(West Coast, Gulf of Mexico, and East Coast) and surface

types (land, coast, and ocean surface types) and shown for

retrievals IMERG Final (IM-F), IMERG Late (IM-L),

IMERG Early (IM-E), IMERG PMW (PMW), IMERG IR

(IR), IMERG PMW morph (morph), and morph and IR mix

(morph1IR). The detection performance is discussed in

terms of algorithms, regions, and surface types.

TABLE 2. The sample size of GV-MRMS and IMERG for each

surface type. Quality control refers to disregarding the grids that

reported snow,RQI of less than 100, and grids that are farther away

from the closest NEXRAD radar by more than 100 km.

Surface

type

No. of data pairs without

quality control

No. of data pairs after

quality control

Land 24 691 850 9 239 994

Coast 24 823 923 9 853 882

Ocean 63 495 762 3 263 487
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In Fig. 3, the dominant categorical statistic across the

merged products IM-F, IM-L, and IM-E is the false alarm rate,

which ranges from 36% to 59%. The next highest categorical

statistic is hit rate ([18%–31%]), followed by correct negative

rate ([12%–28%]). For most regions and surface types, the

lowest categorical skill is the miss rate ([5%–13%]; Fig. 3).

These indicate that the algorithms are biased toward retrieving

rainfall that is not detected byGV-MRMS. The IM-F detection

capability is on par with IM-L over all regions and surface

types. It suggests that either the monthly gauge correction does

not influence detection capabilities, or that gauges are not

dense enough along coastal pixels to be used in IMERG and

impact the detection capabilities of IM-F. Furthermore, the

impact of morphing is more substantial, with IM-F and IM-L

showing higher hit rates and lower misses relative to IM-E.

Note also that there is an increase in false rates from IM-E to

IM-L (110% on average) at the expense of correct negatives.

The accuracy (H 1 C) decreases from IM-E ([46%–51%]) to

IM-L ([34%–45%]), and lowest accuracy is reported by IM-F

([33%–46%]). These results indicated that forward- and

backward- propagated PMW estimates (morph) used in IM-L

and IM-F show some benefit in comparison with the forward-

propagated PMW estimates (morph) used in IM-E. It also

suggests that the morphing tends to increase the occurrence

of retrieved rainfall. The influence of PMW estimates on the

merged products is further confirmed by the PMW categori-

cal statistics, which display similar features as IM-E, IM-L,

and IM-F, albeit with systematic differences, that is, higher

hits (in the range [25%–39%]), higher misses ([11%–19%]),

and lower false alarms ([29%–49%]; Fig. 3).

These performances justify the use of PMWas the backbone

to build the merged products, where preference is given to

PMW estimates with respect to IR estimates in the IMERG

merging procedure. As expected, because of lack of direct

FIG. 3. Hits (blue), misses (orange), false alarms (yellow), and correct negatives (purple) for each SPP over the (left) West, (center) Gulf,

and (right) East Coasts for the (top) land, (middle) coast, and (bottom) ocean surface types.
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observations, the morph detection performance is lower rela-

tive to PMW, with lower hits ([20%–34%]) and significantly

higher false alarm rates ([43%–61%], Fig. 3). The higher false

alarm rates confirm the impact of morphing toward increasing

the occurrence of estimated rainfall. Moreover, out of PMW,

morph, morph1IR and IR products, PMW reports the highest

hit rates followed by morph, then morph1IR, and IR reports

the lowest hit rates. Misses decrease from PMW to morph to

morph1IR while false alarm rates increase (especially from

PMW to morph), again highlighting a tendency to overestimate

rainfall occurrence with increasing time lag from PMW obser-

vations. IR displays the lowest detection performance when

compared with all other products, with significantly lower hit

rate (29% on average), higher miss rate (112% on average),

and the highest correct negative ([40%–54%]) in comparison

with all other products. This indicates that IR tends to miss

rainfall occurrence, and these detection issues may be carried

over to morph1IR (morph has higher detection performance

relative to morph1IR) and eventually to the IM-F.

While the detection performances of each IMERG product

are mostly consistent across regions, one can note some vari-

ations that highlight the impact of terrain and climatology. For

almost all products, the Gulf Coast records lower hit rates than

other regions, that is, on average 3.2% and 7% less relative to

theWest and East Coast regions, respectively (Fig. 3), with the

exception of IR recording lower hits on the West Coast.

Moreover, the Gulf Coast consistently records an average of

1.8% and 0.8% higher false rates than do the West and East

Coast regions, respectively. Consistently, miss rates tend to be

lower in the Gulf Coast over all surface types except ocean.

Clearly this indicates that products detect more rainfall than

what actually occurs over Gulf Coast (Fig. 3). The accuracy

(H 1 C) over these regions is very similar, but the Gulf Coast

records on average 6% and 4% lower accuracy relative to the

West and East Coasts, respectively.

Surface types represent another conditioning factor for

rainfall detection by IMERG (Fig. 3). Across all regions and

products there is a tendency for lower hits over coastal sur-

faces. The coastal transitions remain a challenge for rainfall

estimation from space. Misses are slightly more prevalent over

land, reflecting the challenges in distinguishing the rainfall

signal from the radiometrically warm and variable land sur-

face. Surprisingly, false alarms tend to be higher over the ocean

than over land.

b. IM-F delineation of various rainfall magnitudes

In Fig. 4, the ability of IM-F in detecting rain rate is com-

pared with GV-MRMS with 2D-HSS plots. 2D-HSS plots

quantify IMERG accuracy relative to that of random chance

and determine the optimum precipitation delineation. Figure 4

shows 2D-HSS plots over each surface type and region for IM-

F. GV-MRMS rain/no-rain threshold values are indicated on

the x axis and the IM-F rain/no-rain threshold values are on the

y axis. The coloredmap represents theHSS values for different

thresholds applied both to GV-MRMS and IM-F. The black

line is the maximum HSS of IM-F conditioned on the GV-

MRMS threshold and the white line is the maximum HSS of

GV-MRMS conditioned on the IM-F threshold.

Common features reveal the consistent behavior of IM-F

across regions and surfaces. The 2D-HSS is maximum around

the 1:1 line (with exceptions) and takes on minimum values at

extreme thresholds applied on GV-MRMS or IM-F (Fig. 4).

This indicates an overall agreement in between GV-MRMS

and IM-F in delineating similar rainfall rates. IM-F displays

skill in delineating rainfall for certain rainfall rate ranges, with

maximum HSS values above 0.3 and often reaching 0.5. IM-F

delineates rainfall the best along the maximum HSS lines

(black lines in Fig. 4). The maximum HSS values occur in the

range [0.5–1] mm h21 when the maximumHSS lines tend to be

closer to the 1:1 line, reflecting rainfall rates at which IM-F

overall delineates rainfall the best and showsminimumbias. At

rainfall rates lower than 0.5 mm h21, the IM-F maximum HSS

lines are systematically above the 1:1 line, reflecting the over-

estimation of low rainfall rates.Moreover, HSS values (colored

map in Fig. 4) decreases below 0.5 mm h21, confirming a

general challenge in correctly delineating light rainfall. Still, at

the lowest GV-MRMS reference threshold of 0.1 mm h21, the

HSS takes on highest values [0.38–0.45] at the IM-F rainfall

rate threshold [0.4–0.6mmh21]. This indicates that IM-F shows

the best skill in delineating rainfall magnitude of;0.5 mm h21. It

should also be noted that IM-F showsmoderate skill [0.25–0.45] in

delineating rainfall rates [0.1–2 mm h21]. Conversely, HSS values

decrease to 0 and below at high rainfall rate thresholds (GV-

MRMS. 15mm h21; Fig. 4) indicating that rainfall rate extremes

are not well delineated. The IM-F maximum HSS curve also

reveals a region-dependent slight overestimation and underesti-

mation of rainfall precipitation rates above 5 mm h21. The IM-F

effective sensitivity line (white line in Fig. 4) corresponds to the

GV-MRMS maximum HSS conditioned on IM-F threshold and

shows whichGV-MRMS features are best reproduced by IM-F. It

indicates that IM-F effective sensitivity for rates above 0.1mmh21

is around0.3mmh21. Theeffective sensitivity remains below the1:

1 line for low-rate thresholds (e.g., below 0.5 mm h21), indicating

that lower precipitation rates tend to be missed. Conversely, the

effective sensitivity is above the 1:1 line at high-rate thresholds

(e.g., above 0.5 mm h21), indicating a possible overestimation in

IM-F rates. In general, effective sensitivity (white line) and cor-

responding rainfall thresholds of IM-F are lower than the maxi-

mum HSS curve (black line).

In relation to varying climatologies, regions display dis-

tinguishing features in the 2D-HSS plots (Fig. 4). The East

Coast and the Gulf Coast have larger areas of positive HSS

values than does the West Coast, which indicates that IM-F

tends to delineate rainfall over a larger range of rainfall mag-

nitudes (e.g., GV-MRMS threshold . 15 mm h21; Fig. 4) in

these regions. The West Coast transitions to HSS values close

or below zero for GV-MRMS rainfall rate thresholds above

10 mm h21. A possible explanation is orographic precipitation

enhancement in complex terrain close to the coastline that is

missed by IM-F and negatively impacts its ability to delineate

rainfall rates above this threshold. High precipitation rates can

be associated with shallow warm-rain processes that generate

lower ice content aloft (e.g., Carr et al. 2017; Porcacchia et al.

2017). As ice content is a primary driver of precipitation de-

tection for PMW retrievals, orographic events are a challenge.

The detection issues of higher rainfall magnitudes in IMERG
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and PMW products are in agreement with the findings of past

studies and require better understanding of the ice content in

heavy precipitation events (Petković and Kummerow 2015;

Derin et al. 2018). The West Coast region reports the highest

HSS values across all surfaces in the range 0.3–0.5 mm h21,

indicating higher IM-F ability to delineate moderate rainfall in

this region. A detailed performance analysis of PMW retrievals

of specificWest Coast precipitation events such as atmospheric

rivers is warranted and will be considered in a future study. By

contrast, the East Coast land and coast and the Gulf Coast

ocean report lowest HSS values. Again, it could be explained

by specific precipitation processes experienced in these regions

that challenge the PMW retrievals inputs to IM-F. For exam-

ple, precipitation in the Gulf Coast has more tropical charac-

teristics than in the West Coast, that involve warm rain process.

Over the East Coast, IM-F shows a lower conditional bias than

in other regions, as the maximumHSS curves are closer to the 1:

1 line across the range of rainfall rate thresholds. One significant

difference between regions can be seen with the effective sen-

sitivity of IM-F (white curve). Over the West Coast it displays a

higher conditional deviation from the 1:1 line relative to theGulf

and East Coasts. The best IM-F effective sensitivity can be ob-

served over the East Coast, followed by the Gulf Coast.

Surfaces are consistently driving IM-F performances. Over the

ocean, IM-F displays better detection skills relative to other sur-

faces, for example, with improved delineation of light precipitation

and high rates ofHSS, with the exception of theGulf Coast, where

IM-F shows the lowest HSS values relative to all other regions and

surface types. The effective sensitivity of IM-F tends to be higher

over the ocean (i.e., closer to 1:1 line; [0.15–0.2] mm h21) than

other surfaces ([0.2–0.4]mmh21), highlighting a better delineation

of light precipitation (,0.3 mm h21). This is expected since

GPROF can take advantage of the low-frequency channels over

ocean, which are more directly sensitive to light and shallow

(predominately liquid) precipitation (Kidd et al. 2017). Over coast

and land the detection skills tend to be similar. The GV-MRMS

maximumHSS (white curve) has distinct differences especially for

rainfall magnitudes 0.1–0.4 mm h21 over theWest Coast land and

coast surface types.

c. Maximum skill of IMERG products and components at
delineating various GV-MRMS rainfall magnitudes

The gradients of HSS magnitudes in Fig. 4 provide subtle

differences in terms of IM-F detection performance over dif-

ferent regions and surface types. All IMERG products’ de-

tection performance are reported in Fig. 5 with the maximum

FIG. 4. 2D-HSS over each surface type and region for IM-F. The thick black line corresponds to the IM-F rain-rate threshold that

maximizes theHSS as a function ofGV-MRMS rain-rate threshold. Thewhite line corresponds to theGV-MRMS rain-rate threshold that

maximizes the HSS as a function of IM-F.
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skill in delineating GV-MRMS rates above a given threshold

(e.g., black curves in Fig. 4). It represents the intrinsic (bias

independent) discrimination ability of the satellite algorithms

with respect to GV-MRMS.

In general, all IMERG products (except IR) display

significant skill (HSS . 0.43) in discriminating rainfall oc-

currence with respect to GV-MRMS up to ;2 mm h21,

above which HSS decreases significantly especially with

higher rainfall thresholds. Surprisingly morph has the

highest discrimination ability with respect to GV-MRMS

up to;2 mm h21 threshold, then above this threshold PMW

shows the highest discriminating skill.

IM-F and IM-L exhibit similar performances in delineating

all nonzero (.0.1 mm h21) GV-MRMS rain rates (HSS in the

range 0.36–0.45) meanwhile IM-E performance is lower (HSS

in the range 0.3–0.4). As noted earlier, IM-L applies forward

and backward morphing and IM-E applies forward morphing

only, which can explain the significant detection skill differ-

ence between the two products. Morph exhibits the highest

performance in delineating all nonzero GV-MRMS (HSS in

the range 0.39–0.48). PMW skill in delineating GV-MRMS

thresholds in the range [0.1–0.5] mm h21 is lower relative to

morph and morph1IR products but is better than morph1IR

above 0.5 mm h21 and better than morph above 2 mm h21.

The detection performance of the PMW,morph, andmorph1IR

products should be taken into consideration when merging them

into IM-F, IM-L, and IM-E. Note that both morph and PMW

display better skill at delineating GV-MRMS rainfall at thresh-

olds higher than 1 mm h21 relative to IM-F, IM-L, and IM-E.

Over all regions, the products show varying skill at delin-

eating GV-MRMS rain-rate thresholds, and specifically

higher GV-MRMS rain-rate thresholds. Products have the

highest HSS values over theWest Coast up to approximately

2 mm h21. Above this value, HSS sharply decreases to 0 for

thresholds higher than approximately 10 mm h21. Over the

Gulf Coast and East Coast the HSS curves display smoother

features and take on values above 0 over a wider range of

GV-MRMS rainfall thresholds. HSS values over the Gulf

and East Coast are similar except over the Gulf Coast ocean

where they are lower as noted earlier.

As expected, HSS values tend to be higher for all GV-

MRMS rain-rate thresholds over the ocean surface type when

compared with other surface types (Gulf Coast ocean being an

exception), as GPROF uses the full range of PMW channels to

delineate precipitation. The PMW product displays significant

differences in delineating GV-MRMS rain rates over the

ocean, coast, and land surfaces especially over the West Coast.

IMERG products have lower skill delineating GV-MRMS

FIG. 5. Maximum skill of IMERG at discriminating GV-MRMS rain-rate thresholds over each region and surface type.
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rain-rate thresholds higher than;10 mm h21. This lack of skill

is exacerbated over the land and coast surface type over the

West Coast. Again, this indicates the direct effect of complex

terrain proximity on the performance of IMERG products.

As stated in section 3, another set of information we can

discern from the 2D-HSS plots is the rain-rate threshold at

which the SPP estimates maximize HSS (Rspp); that is, Rspp

is the rainfall magnitude at which SPP estimates show the

best agreement in delineating all nonzero GV-MRMS rain

rates (.0.1 mm h21). This value is determined from the

intersection of the black thick line in Fig. 4 with the y axis.

The Rspp values for each SPP, region and surface type are

provided in Table 3.

In general, all products (except IR) display significant skill in

identifying rain versus no rain with respect to random chance,

i.e., HSS values are higher than 0.3. Overall IM-F and IM-L

HSS values are similar to each other ([0.36–0.45]), but the

corresponding Rspp values differ slightly with IM-F Rspp being

in the range [0.4–0.6] mm h21 and IM-LRspp being in the range

[0.4–0.8] mm h21. On the other hand, IM-E has lower HSS

([0.32–0.4]) and higher corresponding Rspp ([0.4–1.0 mm h21])

magnitudes. One interesting result is that morph (Rspp [0.4–

0.8 mm h21] and HSS [0.38–0.47]) has higher HSS in discrim-

inating between zero and nonzeroGV-MRMSrain rates relative

to PMW (Rspp [0.4–0.8 mm h21] and HSS [0.30–0.39]) with

similar Rspp values. In comparison with morph, morph1IR dis-

plays similarRspp ([0.4–0.8 mmh21]) but with lowerHSS ([0.37–

0.45]), and IR has the lowest skill ([0.11–0.24]). Overall, these

results show that a 0.1 mm h21 rain/no-rain threshold (com-

monly used threshold in the literature) is not the optimum

rain/no-rain threshold for IMERG and each subproduct has

different threshold and performance in discriminating between

GV-MRMS rain and no rain. These differences have implica-

tions in estimating the spatial extent of precipitation fields and

should be considered accordingly.

Over the regions SPPs have different performances. Over

theWest Coast and East Coast similar Rspp ([0.1–0.5 mm h21])

and HSS ([0.09–0.47]) values are reported. Over the Gulf

Coast, Rspp ([0.1–1.0 mm h21]) values are significantly higher

than over other regions with comparable HSS values ([0.23–

0.45]), suggesting that SPPs products tend to miss light pre-

cipitation in this area. As expected, the ocean surface type

shows the highest HSS values ([0.13–0.47]) with lowest Rspp

([0.1–0.6 mm h21]) magnitudes. It indicates that SPPs show

skill in capturing the rain/no-rain limit at lower rates over

ocean than over other surfaces. Meanwhile land and coast

surface types have similar HSS ([0.11–0.44]) and ([0.13–0.46],

respectively), whereas Rspp has higher range over the coast

([0.1–1.0 mm h21]) than over land ([0.3–0.8 mm h21])

surface types.

d. Precipitation typology

As typology is a key characteristic of precipitation (Kirstetter

et al. 2020), IMERG detection performance is investigated as a

function of precipitation types, that is, GV-MRMS stratiform

and convective rainfall. In this section, a SPP–referencematched

pair is included in the statistics if the reference is nonzero

(.0.1 mm h21). Any pixel with positive convective volume

contribution is considered as a convective case. Figure 6 pro-

vides hits andmisses for each product over each surface type and

region for stratiform (bold colors) and convective (pale colors)

precipitation types.

Overall, the various SPPs display similar rainfall detection

performances for both convective and stratiform rainfall,

with hits generally above 70%. IR stands out with signifi-

cantly lower performance than other estimates (around 50%

detection hits), and a markedly higher (111% on average)

detection of convective rainfall occurrence than stratiform

rainfall occurrence. Lower IR detection capability of strati-

form rainfall has been reported in the literature (e.g.,

Stampoulis et al. 2013; Kirstetter et al. 2020). Convective

rainfall is associated with higher/colder cloud tops that are

more easily detectable in IR observations than stratiform

rainfall. Morph and morph1IR tend to have higher hit rates

than other products for both rainfall types over all regions

and surface types. Apart from IR, PMW estimates tend to

have lower detection scores relative to other estimates, which

highlights the challenges in detecting rainfall from Level-2

observations. PMW relative performances in detecting pre-

cipitation type occurrence also vary across surface types. This

lower detection ability seems to affect IM-E as it shows

similar performance as PMW across all regions and surfaces.

The morphing has a slight but positive impact on precipita-

tion detection and benefits IM-L and IM-F.

TABLE 3. The Rspp (mm h21) optimum SPP rain-rate threshold and corresponding HSS values for delineating all nonzero

rain rates of GV-MRMS.

IM-F IM-L IM-E PMW Morph Morph1IR IR

Surface type Rspp Skill Rspp Skill Rspp Skill Rspp Skill Rspp Skill Rspp Skill Rspp Skill

West Coast Land 0.5 0.41 0.5 0.41 0.5 0.37 0.5 0.33 0.4 0.42 0.4 0.43 0.6 0.11

Coast 0.4 0.39 0.4 0.39 0.4 0.35 0.4 0.34 0.4 0.41 0.4 0.39 0.1 0.13

Ocean 0.4 0.45 0.4 0.45 0.4 0.4 0.5 0.39 0.4 0.47 0.4 0.45 0.13 0.14

Gulf Coast Land 0.6 0.41 0.8 0.42 0.8 0.37 0.8 0.38 0.8 0.44 0.8 0.41 0.4 0.18

Coast 0.6 0.42 0.8 0.42 1.0 0.38 0.8 0.39 0.8 0.45 0.8 0.41 0.2 0.24

Ocean 0.6 0.36 0.6 0.36 0.6 0.32 0.6 0.3 0.5 0.38 0.6 0.37 0.1 0.23

East Coast Land 0.5 0.39 0.5 0.39 0.5 0.34 0.6 0.35 0.5 0.44 0.5 0.42 0.3 0.09

Coast 0.4 0.42 0.5 0.41 0.5 0.37 0.5 0.37 0.4 0.46 0.4 0.4 0.1 0.15

Ocean 0.4 0.42 0.4 0.41 0.4 0.36 0.4 0.34 0.4 0.44 0.4 0.43 0.1 0.18
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Detection of stratiform and convective rainfall occurrence

varies significantly across regions, which highlights the impact

of precipitation regimes. Detection of precipitation types var-

ies also slightly depending on surfaces. Over the land and

coastal surfaces of the East Coast, all products detect convec-

tive rainfall occurrence slightly better than stratiform rainfall

occurrence. It tends to be the other way around on the West

Coast, where slightly higher hit rates are associated with

stratiform rainfall. For example, the West Coast IM-F, IM-L,

and IM-E stratiform hit rates are slightly higher (;6%) over

coastal and ocean surface types relative to the convective hit

rate. Again, it probably reflects the difference in precipitation

generationmechanisms across both regions, and the challenges

in detecting orographic precipitation from space on the West

Coast. Over the ocean, most products display similar or slightly

better detection of stratiform rainfall (except IR). On the East

Coast and West Coast, the detection of stratiform rainfall is

higher over ocean than over land and coastal surfaces (111%

hits with IM-F on the West Coast), as expected. The detection

of convective rainfall occurrence follows the same trend, albeit

with less difference across surfaces. It is likely that the transi-

tion of surfaces and environments (e.g., surface emissivity

gradients) impacts more stratiform than convective satellite

estimates. On the Gulf Coast, the detection performance of

both convective and stratiform precipitation remains about the

same across surfaces for both precipitation types.

Figure 7 provides IMERG products maximum skill in de-

lineating stratiform and convective GV-MRMS rates above a

given threshold (e.g., black curves in Fig. 4). Because IM-F,

IM-L, and IM-E performances are very similar, only IM-F is

reported. In general, IMERG products and their components

display significant skill in delineating stratiform and convective

FIG. 6. Hits (blue) and misses (orange) for each SPP over the (left) West, (center) Gulf, and (right) East Coasts for the (top) land,

(middle) coast, and (bottom) ocean surface types for stratiform (bold color hues) and convective (pale color hues) precipitation type. The

GV-MRMS rain/no-rain threshold is set as 0.1 mm h21.
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rainfall occurrence as all curves (except IR’s) display maxi-

mum HSS values greater than 0.3. However, the ability to

delineate rainfall displays a strong dependence with rainfall

magnitude and type. Rainfall occurrence delineation skills are

higher with stratiform rainfall at low to moderate rates

(,5 mm h21) and higher with convective rainfall at high rates

(.5 mm h21). At threshold 0.1 mm h21, all products except IR

show significant skill with stratiform rainfall (HSS value

around 0.3) while the delineation of convective rainfall oc-

currence shows performance close to random chance. The

stratiform curves reach their maximum around 1.5 mm h21

with HSS in the range [0.35–0.52], except IR that shows sig-

nificantly lower skills (HSS in the range [0.23–0.33]). The

convective curves consistently reach their maximum at higher

rainfall rates around 2.5 mm h21 with generally lower HSS

([0.3–0.52], except IR that again shows significantly lower skill

(HSS in the range [0.22–0.35]). Often, the IR maximum con-

vective HSS is higher than the maximum stratiform HSS, il-

lustrating the dependence of the IR retrieval to cloud top

information. The differing detection performances of the

PMW, morph and morph1IR products for different precipi-

tation types provide us with further insights on where the de-

tection challenges lie. First, precipitation typology is a strong

characteristic that is currently not accounted for in IMERG

while these results call for ingesting the GPROF precipitation

type information into IMERG. Second, the poor delineation of

convective precipitation at low-rate thresholds may reveal the

impact of subpixel rainfall nonuniformity on IMERG.

Similar to findings in section 4a (Fig. 4), morph and PMW

have the highest discrimination ability for both stratiform and

convective rainfall and for all rainfall thresholds, consistently

followed by morph1IR and finally IR that shows the lowest

skill. The skills of the combined IM-F lay between morph1IR

and morph. PMW exhibits the highest performance in delin-

eating all nonzero stratiform rainfall (HSS in the range 0.3–0.35

for GV-MRMS . 0.1 mm h21).

The three regions are characterized by different precipita-

tion regimes and generation mechanisms. Accordingly, all

products show regionally varying skill at delineating stratiform

and convective GV-MRMS precipitation. Again, West Coast

stands out with the highest detection performance difference

between stratiform (higher) and convective (lower) rainfall

types over land and coastal surfaces. West Coast overland de-

tection of convective rainfall is the lowest across regions and

surfaces. It confirms that the challenges in this region are asso-

ciated with orographic generation of convective precipitation.

FIG. 7. Maximum skill at discriminating SPP stratiform (solid lines) and convective (dashed lines) rain rates exceeding the indicated

GV-MRMS threshold values over each region and surface type.
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Detection skills are generally more uniform across stratiform

than convective precipitation over the ocean.

5. Conclusions

The ability to detect rainfall over the land–coast–ocean

continuum is examined over three coastal regions of the

United States, that is, theWest Coast, Gulf ofMexico, andEast

Coast, each of which are characterized by different topogra-

phies and precipitation climatologies. Detection capabilities

are contrasted over different surfaces (land, coast, and ocean)

to understand the performances over the land–coast–ocean

transition. Moreover, the analysis is performed by examining the

detection of stratiform and convective rainfall occurrence. An

integrated and novel approach is developed to trace the detection

performance of IMERGV06B (IM-F, IM-L, IM-E) back to their

components (PMW, morph, morph1IR, and IR) and sources of

rainfall estimates. It is performed by using high-resolution GV-

MRMS rainfall estimates as ground reference at the IMERG

native spatial and temporal resolution (0.18 and 30 min).

The main results for precipitation detection characteristics

are summarized as follows:

d Decreasing detection performances are consistently noted

from retrievals that rely on observations more indirectly

related to surface precipitation. The best performances (in

terms of hit rate) are reported with PMW estimates followed

by morph, morph1IR, and finally IR estimates. IR displays

the lowest detection performance when compared with all

other products, with significantly lower hit rate (29% on

average), higher miss rate (112% on average), and the

highest correct negative ([40%–54%]) relative to all other

products. Overall, IMERG displays nonhomogeneous pre-

cipitation detection properties that vary according to which

component is used, and that translates into nonhomoge-

neous accuracy in space and time.
d The positive impact of the morphing is substantial on

precipitation detection. IM-F and IM-L (with forward- and

backward- propagated PMW estimates) show higher hit

rates and lower misses than IM-E (forward- propagated only

PMW estimates). Surprisingly, morph displays the highest

discrimination ability with respect to GV-MRMS up to

;2 mm h21 threshold and above this threshold PMW shows

the highest discrimination skill. Moreover, morph and PMW

display better skill at delineating the reference rainfall at

thresholds higher than 1 mm h21 than do IM-F, IM-L, and

IM-E.
d IM-F detection capability is on par with IM-L over all regions

and surface types, which suggests that the monthly gauge

correction does not influence the detection capabilities.

Varying rain/no-rain detection thresholds for IMERG and

each subproduct have implications for estimating the spatial

extend of precipitation fields. It is recommended to account for

the detection performance of the PMW, morph and morph1IR

retrievals when merging them into IM-F, IM-L, and IM-E.

Regional differences in terms of detection performance

have significant implications for the generalization of the re-

sults to other coastal regions of the world:

d The detection performances of each IMERG product or its

component are mostly consistent across regions, yet one can

note some variations that highlight the impact of terrain and

climatology.
d The Gulf Coast has lower hit rates (3.2%, i.e., 7% average

less relative to other regions) and higher false rates (1.8%,

i.e., 0.8% average higher).
d From the 2DHSS analysis, IMERG tends to better delineate

rainfall over a larger range of rainfall magnitudes in the East

and Gulf Coast regions than in the West Coast. Orographic

precipitation enhancement associated with the proximity of

complex terrain to the coastline challenges IMERG ability

to detect the occurrence of a large range of rainfall magni-

tudes, particularly at the high end.

Surface types have a significant influence that is attributed to

impact retrievals through emissivity gradients and contrasts in

land/ocean precipitation characteristics:

d Coastal transitions remain a challenge for rainfall estimation.

Misses are slightly more prevalent over land, reflecting the

challenges in distinguishing the rainfall signal from the

radiometrically warm and variable land surface. Moreover,

across all regions and products there is a tendency for lower

hit rates and higher false alarms over coastal surfaces.
d Over the ocean, IMERG displays better detection skill with

improved delineation of light precipitation and high rates

relative to other surfaces. This is expected since GPROF

takes advantage of more brightness temperature channels

over the ocean.
d Over the ocean, IMERG detection generally suffers more

from false alarms in proportions ranging from 10% to 53%

depending on the satellite product or component.

These results point to similar behavior across the coastal

transitions regions of theUnited States, which suggests that the

results of this study can be generalized to other coastal regions

of the world to some extent. For example, terrain and clima-

tological patterns similar to theWest Coast can be found in the

Andes, Spain, and so on. Regional differences (especially the

West Coast) probably result from precipitation processes and

generation mechanisms that are not captured by IMERG. This

is highlighted with the impact of precipitation typology:

d Overall IMERG products and components display similar

rainfall detection performances for both convective and

stratiform rainfall, with hits generally above 70%. IR stands

out with significantly lower performance (;50% hits), and a

markedly higher detection of convective rainfall occurrence

(111% on average) than stratiform rainfall occurrence.

Convective rainfall is associated with higher/colder cloud

tops that are more easily detectable in IR observations than

stratiform rainfall.
d Detection of stratiform and convective rainfall occurrence

varies significantly across regions, which highlights the im-

pact of precipitation regimes.
d The ability to delineate rainfall displays a strong dependence

with rainfall magnitude and type. Rainfall occurrence delin-

eation skills are higher with stratiform rainfall at low to

moderate rates (,5 mm h21) and higher with convective
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rainfall at high rates (.5 mm h21). Poor delineation of convec-

tive precipitation at low rate thresholdsmay reveal the impact of

subpixel rainfall nonuniformity within IMERG pixels.
d Morph and PMW have the highest discrimination ability for

both stratiform and convective rainfall and for all rainfall

thresholds, consistently followed by morph1IR and finally

IR showing the lowest skill. These varying detection perfor-

mances provide us with further insight on where the detec-

tion challenges lie.

Because precipitation typology is a strong characteristic that

is currently not accounted for in IMERG, these results call for

ingesting the GPROF precipitation type information into

IMERG. It would potentially increase IMERG accuracy and

its consistency across regions. A complementary study (Part II)

will focus on the quantification performance of IMERGV06B

as a second step of the evaluation over the land–coast–ocean

continuum.
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